CHAPTER ONE EXERCISES

EXERCISES 1-A

1. Express the following in terms of i :
(i) $\sqrt{-4}$
(ii) $\sqrt{-25}$
(iii) $\sqrt{-5}$
(iv) $\sqrt{-27}$
(v) $\sqrt{16}-\sqrt{-9}$
2. Express each of the following as an element of the set $\{-1,1, i,-i\}$:
(i) i^{3}
(ii) i^{6}
(iii) i^{9}
(iv) i^{-4}
(v) i^{16}.
3. Express each of the following in the form $a+i b$:
(i) $(3+2 i)+(5-i)$
(ii) $(6-i)+(4-3 i)$
(iii) $(-2+3 i)+(6-4 i)$
(iv) $(-2-i)+(-1+7 i)$
(v) $6 i+(3+5 i)$
(vi) $(a+i b)+(c+i d)$
4. Simplify each of the following:
(i) $(2-6 i)-(1+i)$
(ii) $(3-6 i)-(2+4 i)$
(iii) $(2-i)-(-1+4 i)$
(iv) $3-(2+4 i)$
(v) $(6-2 i)-4$
(vi) $(a+i b)-(2-3 i)$
5. Express in the form $a+i b$:
(i) $(3+i)(2+4 i)$
(ii) $(1-i)(2+3 i)$
(iii) $(2-i)(3+2 i)$
(iv) $(2+3 i)(2-3 i)$
(v) $(1-4 i)^{2}$
(vi) $(2+i)^{3}$
6. If $z_{1}=3-i, z_{2}=1+2 i$ and $z_{3}=-2 i$, express in the form $a+i b$:
(i) $3 z_{1}$
(ii) $z_{1}-z_{3}$
(iii) $2 z_{1}+z_{2}$
(iv) $2 z_{2}+z_{3}$
(v) $-2 z_{2}$
(vi) $i z_{2}$
(vii) $2 z_{1}+i z_{3}$
(viii) $i\left(z_{2}, z_{3}\right)$
7. If $z=-3+5 i$, find (i) $z+\bar{z}$ (ii) $z \cdot \bar{z}$
8. Express the following in the form $x+i y$:
(i) $\frac{1}{2-3 i}$
(ii) $\frac{2+i}{1-2 i}$
(iii) $\frac{3+2 i}{2-3 i}$
(iv) $\frac{2 i}{2+i}$
(v) $\frac{3-2 i}{i}$
(vi) $\frac{2-3 i}{2+i}$
9. If $z=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$, find z^{2}.

Hence verify that $\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{3}=1$.
10. If $z_{1}=2-5 i$ and $z_{2}=1-4 i$, express in the form $a+i b$:
(i) $z_{1}+\bar{z}_{2}$
(ii) $z_{1} \bar{z}_{2}$
(iii) $\frac{1}{\bar{z}_{1}}$
(iv) $i \bar{z}_{1} z_{2}$
11. If $z=3-i$, express $z+\frac{1}{z}$ in the form $a+i b$.
12. If $z=x+i y$, prove that
$\operatorname{Re}(z)=\frac{1}{2}(z+\bar{z})$ and $\operatorname{Im}(z)=\frac{1}{2 i}(z-\bar{z})$
13. (i) Evaluate $1+i-3 i^{2}+i^{7}$
(ii) Given that $(2+3 i) z=4-i$, find the complex number z in the form $a+i b$.
14. Show that $(\cos \theta+i \sin \theta)^{2}=\cos 2 \theta+i \sin 2 \theta$.
15. Express (i) $\frac{1+i}{1-i}$ and (ii) $\frac{1-i}{1+i}$ in the form $a+i b$.

Hence, or otherwise, find k if $\frac{1+i}{1-i}=k\left(\frac{1-i}{1+i}\right)$.
16. Express $\frac{-1+i \sqrt{3}}{-1-i \sqrt{3}}$ in the form $a+i b$, where a and b are real numbers.
17. If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, show that $z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}$ is real.
18. (i) Simplify $(1-i)^{-2}+(1+i)^{-2}$.
(ii) The complex numbers u, v and w are such that $\frac{1}{u}+\frac{1}{v}=\frac{1}{w}$. If $u=3+2 i$ and $v=2+3 i$, find w in the form $a+i b$.
19. Simplify the following
(a) $(2+6 i)+(9-2 i)$
(b) $(8-3 i)-(1+5 i)$
(c) $3(7-3 i)+i(2+2 i)$
(d) $(3+5 i)(1-4 i)$
(e) $(5+12 i)(6+7 i)$
(f) $(2+i)^{2}$
(g) i^{3}
(h) i^{4}
(i) $(1-i)^{3}$
(j) $(1+i)^{2}+(1-i)^{2}$
(k) $(2+i)^{4}+(2-i)^{4}$
(1) $(a+i b)(a-i b)$
20. The imaginary part of a complex number is known to be twice its real part. The absolute value of this number is 4 . Which number is this?
21. The real part of a complex number is known to be half the modulus of that number. The imaginary part of the number is 1 . Which number is it?
22. True or False? (In mathematics this means that you should either give a proof that the statement is always true, or else give a counterexample, thereby showing that the statement is not always true.)

For any complex numbers z and w one has
(a) $\mathfrak{R e}(z)+\mathscr{R} c(w)=\mathscr{R} c(z+w)$
(b) $\overline{z+w}=\bar{z}+\bar{w}$
(c) $\operatorname{Im}(z)+\mathfrak{I m}(w)=\operatorname{Im}(z+w)$
(d) $\overline{z w}=(\bar{z})(\bar{w})$
(e) $\operatorname{Re}(z) \mathscr{R c}(w)=\operatorname{Re}(z w)$
(f) $\overline{z / w}=(\bar{z}) /(\bar{w})$
(g) $\mathfrak{R c}(i z)=\operatorname{Im}(z)$
(h) $\operatorname{Re}(i z)=i \operatorname{Re}(z)$
(i) $\mathfrak{R e}(i z)=\mathfrak{I m}(z)$
(j) $\mathfrak{R c}(i z)=i \mathfrak{J m}(z)$
(k) $\operatorname{Im}(i z)=\operatorname{Re}(z)$
(1) $\mathfrak{R e}(\bar{z})=\mathfrak{R e}(z)$
23. Show that $\left|e^{a+b i}\right|=e^{a}$.

EXERCISES 1-B

1. Find, in the form $a+i b$, the roots of these equations:
(i) $z^{2}+6 z+10=0$
(ii) $z^{2}-2 z+2=0$
(iii) $z^{2}-6 z+13=0$
(iv) $2 z^{2}-2 z+5=0$
2. Verify that $5+i$ is a root of the equation $z^{2}-10 z+26=0$ and write down the other root.
3. Write down the quadratic equation with roots
(i) $\pm 2 i$
(ii) $1 \pm 2 i$
(iii) $3 \pm 2 i$
(iv) $-2 \pm i \sqrt{5}$.
4. Verify that $\frac{1}{2}+\frac{1}{2} i$ is a root of the equation $2 z^{2}-2 z+1=0$ and write down the other root.
5. Solve for x and y in each of the following equations:
(i) $x+i y=(2-3 i)(3+i)$
(ii) $2 x+5 i y=(6+2 i)(3-4 i)$
(iii) $(x+i y)+3(2-3 i)=6-10 i$
(iv) $2 x+i y=6$

- (v) $(2 x+y-5)+i(3 x+y-7)=0$
(vi) $x+i y=(3-2 i)(3+2 i)$

6. If $\frac{3-2 i}{5+i}=a+i b$, find the value of a and b.
7. Find the values of x and y in these equations:
(i) $(3-5 i)-(x+i y)=(6+i)+(y-x i)$
(ii) $(x+i y)(2+i)=(1-i)^{2}$
8. If $x^{2}+2 x y i+y^{2}=10+6 i$, find the values of x and y.
9. If $(x+i y)^{2}=8-6 i$, find the values of x and y.
10. Express each of the following in the form $a+i b$:
(i) $\sqrt{5+12 i}$
(ii) $\sqrt{-15+8 i}$
(iii) $\sqrt{9-40 i}$
11. Express $\sqrt{2-2 i \sqrt{3}}$ in the form $a+i b$, where $a, b \in R$.
12. Expand $(x+i y)(x-i y)$ and hence factorise
(i) $x^{2}+4$
(ii) $x^{2}+9 y^{2}$
(iii) $4 x^{2}+25 y^{2}$
13. Given that $\frac{5}{x+i y}+\frac{2}{1+3 i}=1$, find x and y, both $\in \mathrm{R}$.
14. Given that $z=1+i$, show that $z^{3}=-2+2 i$.

For this value of z, the real numbers p and q are such that

$$
\frac{p}{1+z}+\frac{q}{1+z^{3}}=2 i
$$

Find the values of p and q.
15. (i) One root of the equation $x^{2}-a x-b=0$ is $2-i$.

Find the values of a and $b \in R$.
(ii) Two complex numbers z_{1} and z_{2} are such that $z_{1}+z_{2}=1$.

If $z_{1}=\frac{x}{1+i}$ and $z_{2}=\frac{y}{1+2 i}$, find x and y.
16. The points a and c represent in the Argand diagram the roots of the equation $z^{2}-6 z+13=0$. If [$a c$] is the diagonal of a square $a b c d$, find
(i) the numbers represented by the points b and d, if d has the larger x-coordinate.
(ii) the area of the square $a b c d$.
17. If $z_{1}=a+b^{2}-3 i$ and $z_{2}=2-a b^{2} i$, find the real values of a and b such that $z_{1}=\bar{z}_{2}$.

EXERCISES 1-C

1. Represent each of the following numbers on an Argand diagram:
(i) $2+3 i$
(ii) $-2+i$
(iii) $-3 i$
(iv) 4
(v) $i(2-3 i)$
(vi) $\frac{3}{i}$
(vii) $(2+3 i)(i-i)$
(viii) $\frac{3-2 i}{3+4 i}$
2. Write down the modulus of each of these:
(i) $3-4 i$
(ii) $1+2 i$
(iii) $\sqrt{3}-i$
(iv) $(2+3 i)(1-2 i)$
(v) $\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$
(vi) $(x+1)+i y$
3. Express each of the following in the form $a+i b$ and hence find the modulus of each:
(i) $i(1-i)$
(ii) $(1+i)(\sqrt{3}+i)$
(iii) $\frac{-4}{1+i}$
4. If $z_{1}=3-4 i$ and $z_{2}=5+12 i$, show that $\left|z_{1}+z_{2}\right|<\left|z_{1}\right|+\left|z_{2}\right|$.
5. If $z_{1}=3-i$ and $z_{2}=4-3 i$ verify that
(i) $\left|z_{1}\right| \cdot\left|z_{2}\right|=\left|z_{1} z_{2}\right|$
(ii) $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$.
6. Express each of these complex numbers in the form $r(\cos \theta+i \sin \theta)$:
(i) $1+i$
(ii) $\sqrt{3}+i$
(iii) $-\sqrt{2}+i \sqrt{2}$
(iv) $1-i \sqrt{3}$
(v) $4 i$
(vi) $\frac{1}{2}-\frac{\sqrt{3}}{2} i$
(vii) -5
(viii) $-3 i$
(ix) $-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i$
7. Simplify the following and express your answers in the form $r(\cos \theta+i \sin \theta)$:
(i) $(1+i \sqrt{3})^{2}$
(ii) $\frac{-2}{-\sqrt{3}+i}$
8. If $z=x+i y$, evaluate $\left|\frac{z-1}{1-z}\right|$
(Hint: $\left.\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}.\right)$
9. Express each of the following in the form $a+i b$:
(i) $4\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$
(ii) $2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$
(iii) $\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
(iv) $2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$
10. Find the modulus and argument of z, where $z=\frac{1}{(1-i)^{2}}$.
11. Express the following in the general modulus-argument form:
(i) $2 i$
(ii) $1+i \sqrt{3}$
(iii) $-3-i \sqrt{3}$
(iv) $\frac{2}{-1+i}$
12. Find the modulus and argument of each root of the equation $x^{2}+4 x+8=0$.
13. Find the modulus and argument of (i) $w z$ and (ii) $\frac{w}{z}$ given that $w=10 i$ and $z=1+i \sqrt{3}$.
14. Represent the following graphically and write it in polar form.
a) $1+j \sqrt{3}$
b) $\sqrt{2}-j \sqrt{2}$
15. Represent the following graphically and write it in rectangular form.
a) $6\left(\cos 180^{\circ}+j \sin 180^{\circ}\right)$
b) $7.32 \angle-270^{\circ}$
16. compute and draw the following numbers in the complex plane
a) $e^{\pi i / 3}$
b) $\sqrt{ } 2 e^{3 \pi i / 4}$
c) $\mathrm{e}^{\pi i}+1$ d) $\mathrm{e}^{i \ln 2}$
e) $\frac{e^{-\pi i}}{e^{\pi z / 4}}$
f) $\frac{1}{e^{\pi z / 4}}$
g) $12 e^{\pi i}+3 e^{-\pi i}$
17. compute the absolute value and argument of $\mathrm{e}^{(\ln 2)(1+\mathrm{i})}$
18. Write the following numbers in standard (rectangular) form.
(a) $3 e^{\frac{3 \pi}{4} i}$
(b) $12 e^{-\frac{22 \pi}{3} i}$
(c) $19 e^{\frac{14 \pi}{2} i}$
19. Given $Z=5+2 i, w=-3+5 i$ and $V=7 i$
(a) Plot the complex numbers $z+\bar{z}, w+\bar{w}$ and $v+\bar{v}$ in the complex plane.
(b) Plot the complex number $2 w+\bar{z}+v$ in the complex plane.
(c) Plot the complex number $v-z-w$ in the complex plane.
20. Find $[\mathrm{r}, \theta]$ in the following and express your answer in the polar form.
(a). $[2,1 / 4 \pi] \times[r, \theta]=[10,5 / 4 \pi]$
(b). $\left[\mathrm{r}_{1}, \theta_{1}\right] \times[\mathrm{r}, \theta]=\left[\mathrm{r}_{2}, \theta_{2}\right]$
(c). $\left[\mathrm{r}_{2}, \theta_{2}\right] /\left[\mathrm{r}_{1}, \theta_{1}\right]=[\mathrm{r}, \theta]$

EXERCISES 1-D

1. Use the result $z_{1} z_{2}=r_{1} r_{2}\left\{\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right.$ to simplify the following, giving your answers in the form $a+i b$:
(i) $\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
(ii) $\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{2}$
(iii) $\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
(iv) $\left[2\left(\cos \frac{\pi}{9}+i \sin \frac{\pi}{9}\right)\right]^{3}$
2. If $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$, show that

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left\{\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right\}
$$

3. Use the result obtained in question 2 to express each of the following in the form $a+i b$:
(i) $\frac{\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}}{\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}}$
(ii) $\frac{\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$
(iii) $\frac{\left[2\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)\right]^{4}}{\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}}$
(iv) $\frac{1}{\left[\sqrt{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\right]^{4}}$
4. Simplify $\left(\cos \frac{3 \pi}{7}+i \sin \frac{3 \pi}{7}\right)\left(\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}\right)^{2}$.
5. By expressing each of the following in the form $r(\cos \theta+i \sin \theta)$, write down the modulus and argument of each of these:
(i) $\cos \frac{\pi}{2}-i \sin \frac{\pi}{2}$
(ii) $3\left(\cos \frac{3 \pi}{4}-i \sin \frac{3 \pi}{4}\right)$
(iii) $\sqrt{2}(\cos \theta-i \sin \theta)$
(iv) $\left[2\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)\right]^{2}$
6. (i) Show that if $z=\cos \theta+i \sin \theta$, then $\bar{z}=\frac{1}{\bar{z}}$.
(ii) If $z=\cos \theta-i \sin \theta$, write down the real part and the imaginary part of $(1-z)$.

Now show that $\operatorname{Re}\left(\frac{1-z}{1+z}\right)=0$, where Re is the real part of a complex number.
7. Find, in the form $a+i b$, the complex number z such that

$$
z\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)=1
$$

8. Express $\frac{1+i \tan \theta}{1-i \tan \theta}$ in the form $\cos k \theta+i \sin k \theta, k \in R$.
9. Express $\frac{-1+i \sqrt{3}}{2}$ in the form $r(\cos \theta+i \sin \theta)$ and hence simplify $\left(\frac{-1+i \sqrt{3}}{2}\right)^{3}$.
10. Express the complex number z, given by $z=-2+2 \sqrt{3} i$, in the form $r(\cos \theta+i \sin \theta)$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
Hence, or otherwise, express z^{3} in the form $a+i b$.
Find the modulus and argument of $\frac{1}{z^{4}}$.
11. If $z=\cos \theta+i \sin \theta$, show that $z+\frac{1}{z}=2 \cos \theta$.

Hence find the value of $z-z^{-1}$.
12. Find the value of k if

$$
(\cos \theta+i \sin \theta)^{3}+\frac{1}{(\cos \theta+i \sin \theta)^{3}}=k \cos 3 \theta
$$

13. Express the following in the form $x+i y$

a $(\cos 2 \theta+\mathrm{i} \sin 2 \theta)(\cos 3 \theta+\mathrm{i} \sin 3 \theta)$
b $\left(\cos \frac{3 \pi}{11}+\mathrm{i} \sin \frac{3 \pi}{11}\right)\left(\cos \frac{8 \pi}{11}+\mathrm{i} \sin \frac{8 \pi}{11}\right)$
c $3\left(\cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}\right) \times 2\left(\cos \frac{\pi}{12}+\mathrm{i} \sin \frac{\pi}{12}\right)$
d $\sqrt{6}\left(\cos \left(\frac{-\pi}{12}\right)+\mathrm{i} \sin \left(\frac{-\pi}{12}\right)\right) \times \sqrt{3}\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right)$
e $4\left(\cos \left(\frac{-5 \pi}{9}\right)+\mathrm{i} \sin \left(\frac{-5 \pi}{9}\right)\right) \times \frac{1}{2}\left(\cos \left(\frac{-5 \pi}{18}\right)+\mathrm{i} \sin \left(\frac{-5 \pi}{18}\right)\right)$
f $6\left(\cos \frac{\pi}{10}+i \sin \frac{\pi}{10}\right) \times 5\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \times \frac{1}{3}\left(\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}\right)$
g $(\cos 4 \theta+\mathrm{i} \sin 4 \theta)(\cos \theta-\mathrm{i} \sin \theta)$
h $3\left(\cos \frac{\pi}{12}+\mathrm{i} \sin \frac{\pi}{12}\right) \times \sqrt{2}\left(\cos \frac{\pi}{3}-\mathrm{i} \sin \frac{\pi}{3}\right)$
(i) $\frac{\sqrt{2}\left(\cos \frac{\pi}{2}+\mathrm{i} \sin \frac{\pi}{2}\right)}{\frac{1}{2}\left(\cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}\right)}$ (j) $\frac{3\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right)}{4\left(\cos \frac{5 \pi}{6}+\mathrm{i} \sin \frac{5 \pi}{6}\right)}$ (k) $\frac{\cos 2 \theta-\mathrm{i} \sin 2 \theta}{\cos 3 \theta+\mathrm{i} \sin 3 \theta} \quad$ (l) Evaluate $\frac{\left(\cos \frac{7 \pi}{13}+\mathrm{i} \sin \frac{7 \pi}{13}\right)^{4}}{\left(\cos \frac{4 \pi}{13}-\mathrm{i} \sin \frac{4 \pi}{13}\right)^{6}}$
14. Use de Moivre's theorem to simplify each of the following:
a $(\cos \theta+\mathrm{i} \sin \theta)^{6}$
b $(\cos 3 \theta+\mathrm{i} \sin 3 \theta)^{4}$
c $\left(\cos \frac{\pi}{6}+\mathrm{i} \sin \frac{\pi}{6}\right)^{5}$
d $\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right)^{8}$
e $\left(\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}\right)^{5}$
f $\left(\cos \frac{\pi}{10}+\mathrm{i} \sin \frac{\pi}{10}\right)^{15}$
$g \frac{\cos 5 \theta+i \sin 5 \theta}{\cos 2 \theta+i \sin 2 \theta}$
$\mathbf{h} \frac{(\cos 2 \theta+\mathrm{i} \sin 2 \theta)^{7}}{(\cos 4 \theta+\mathrm{i} \sin 4 \theta)^{3}}$
i $\frac{1}{(\cos 2 \theta+\mathrm{i} \sin 2 \theta)^{3}}$
j $\frac{(\cos 2 \theta+\mathrm{i} \sin 2 \theta)^{4}}{(\cos 3 \theta+\mathrm{i} \sin 3 \theta)^{3}}$
k $\frac{\cos 5 \theta+i \sin 5 \theta}{\cos 3 \theta+i \sin 3 \theta}$
$1 \frac{\cos \theta-i \sin \theta}{\cos 2 \theta-i \sin 2 \theta}$
m $\frac{\cos 5 \theta+i \sin 5 \theta}{\cos 2 \theta-i \sin 2 \theta}$
n $\frac{\cos \theta-i \sin \theta}{\cos 4 \theta-i \sin 4 \theta}$
o $\frac{\cos 2 \alpha+\mathrm{i} \sin 2 \alpha}{\cos \alpha+\mathrm{i} \sin \alpha}$.
p $\frac{(\cos \theta-i \sin \theta)^{2}}{(\cos \theta+i \sin \theta)^{3}}$
(q) $\frac{\cos 2 \theta+i \sin 2 \theta}{\cos 3 \theta+i \sin 3 \theta}$
(r) $(\cos 2 \theta+i \sin 2 \theta)^{3}(\cos 3 \theta+i \sin 3 \theta)^{2}$

EXERCISES 1-E

1. Show that $-2+4 i$ is a root of the equation $z^{2}+4 z+20=0$ and write down the other root.
2. Solve these equations, giving the roots in the form $a+i b$.
(i) $z^{2}-2 z+17=0$
(ii) $z^{2}+4 z+7=0$.
3. If $z=x+i y$, verify that
(i) $z+\bar{z}=2 \operatorname{Re}(z)$
(ii) $|z|^{2}=z \cdot \bar{z}$
4. If $z=x+i y$, verify that
(i) $\overline{z_{1}-z_{2}}=\bar{z}_{1}-\bar{z}_{2}$
(ii) $z_{1} \bar{z}_{2}-\bar{z}_{1} z_{2}=2 i \operatorname{Im}\left(z_{1} \bar{z}_{2}\right)$
(iii) $\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=\frac{1}{2}\left(z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}\right)$
5. Show that $1+i$ is a root of the equation $z^{3}-4 z^{2}+6 z-4=0$ and find the other two roots.
6. Form the quadratic equation whose roots are $-2 \pm i$.

Now show that $-2+i$ is a root of the equation $z^{3}+z^{2}-7 z-15=0$ and find the other roots.
7. Form the quadratic equation whose roots are $-3 \pm 2 i$.

Hence form the cubic equation whose roots are $-3 \pm 2 i$ and 1 .
8. (i) Form the quadratic equation, one of whose roots is $3-i$.
(ii) Form the cubic equation, two of whose roots are 2 and $-1+i$.
9. Find the real root of the equation $z^{3}+z+10=0$, given that one root is $1-2 i$.
10. $\frac{1+2 i}{1-i}$ is a root of the quadratic equation $a x^{2}+b x+5=0, \quad$ where $a, b \in R$. Find the values of a and b.
11. Verify that $2 i$ is a root of the equation $x^{4}+2 x^{3}+7 x^{2}+8 x+12=0$ and find the other roots.
12. Factorise $z^{3}-1$ and hence solve the equation $z^{3}-1=0$, giving the complex roots in the form $a \pm i b$.
If the complex roots are α and β, verify that $\alpha^{2}=\beta$.
13. If $2+i$ is a root of the equation $z^{3}+a z^{2}+b z+10=0$, find the values of a and b given that the product of the three roots is -10 .
14. Explain why the roots of the equation

$$
z^{2}-(3+2 i) z+1+3 i=0
$$

do not occur in conjugate pairs.
Now use the formula $z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ to express the roots of the given equation in the form $a+i b$.
15. Given that $\sqrt{24-10 i}$ is $\pm(5-i)$, solve the equation $z^{2}+(1-3 i) z-(8-i)=0$, expressing the roots in the form $a+i b$.
16. Obtain a quadratic function $f(z)=z^{2}+a z+b$, where a and b are real constants such that $f(-1-2 i)=0$.
17. Given that $\alpha=1+3 i$ is a root of the equation $z^{2}-(p+2 i) z+q(1+i)=0$, and that p and q are real, find p and q and the other root of the equation.
18. Show that i is a root of the equation

$$
z^{3}-i z^{2}-z+i=0
$$

and, by factorising or otherwise, find the other two roots.
19. The complex number z satisfies the equation

$$
4 z \bar{z}-8 z=13-4 i
$$

where \bar{z} is the complex conjugate of z.
Find in the form $x+i y$, the two possible values of z.
20. Solve the equation $z^{2}-(4+5 i) z-3+9 i=0$.
21. In the quadratic equation $x^{2}+(p+i q) x+3 i=0, p$ and q are real.

Given that the sum of the squares of the roots is 8 , find the two pairs of values of p and q.

EXERCISES 1-F

1. Use De Moivre's theorem to simplify the following, expressing each answer in the form $a+i b$:
(i) $\left(\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}\right)^{4}$
(ii) $\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{7}$
(iii) $\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)^{5}$
(iv) $\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)^{6}$
2. Express $\sqrt{3}+i$ in the form $r(\cos \theta+i \sin \theta)$.

Hence use De Moivre's theorem to express $(\sqrt{3}+i)^{8}$ in the form $a+i b$.
3. Change to modulus-argument form and use De Moivre's theorem to evaluate each of the following, giving your answers in the form $a+i b$:
(i) $(1-i)^{4}$
(ii) $(-1-i)^{7}$
(iii) $(-2-2 i)^{5}$
(iv) $\int^{(-\sqrt{3}-i)^{3}}$
4. Use De Moivre's theorem to show that
(i) $(1+i)^{8}=16$
(ii) $\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)^{9}=-i$
5. Express $\left(\frac{1-i \sqrt{3}}{4}\right)^{12}$ in the form $a+i b$.
6. Express $\frac{-1+i \sqrt{3}}{\sqrt{3}+i}$ in the form $a+i b$. Hence evaluate $\left(\frac{-1+i \sqrt{3}}{\sqrt{3}+i}\right)^{99}$.
7. Use the identity $\cos 4 \theta+i \sin 4 \theta=(\cos \theta+i \sin \theta)^{4}$ to show that
(i) $\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$
(ii) $\sin 4 \theta=4 \cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta$.
8. Express $\cos \frac{2 \pi}{3}-i \sin \frac{2 \pi}{3}$ in the form $\cos \theta+i \sin \theta, \theta \in Z$, and hence express $\left(\cos \frac{2 \pi}{3}-i \sin \frac{2 \pi}{3}\right)^{8}$ in the form $a+i b$.
9. Prove that $\left\{\cos \left(\theta+\frac{\pi}{3}\right)+i \sin \left(\theta+\frac{\pi}{3}\right)\right\}^{6}=\cos 6 \theta+i \sin 6 \theta$.
10. Use De Moivre's theorem to evaluate each of the following:

$$
\begin{array}{ll}
\text { (i) }\left(\sin \frac{\pi}{3}+i \cos \frac{\pi}{3}\right)^{6} & \text { (ii) }\left(\sin \frac{\pi}{6}+i \cos \frac{\pi}{6}\right)^{4}
\end{array}
$$

[Hint: $\sin \theta+i \cos \theta=\cos \left(90^{\circ}-\theta\right)+i \sin \left(90^{\circ}-\theta\right)$]
11. Express $\frac{-5}{i-\sqrt{3}}$ in the form, $r(\cos \theta+i \sin \theta)$, and hence express $\left(\frac{-5}{i-\sqrt{3}}\right)^{6}$ in the form $a+i b$.
12. If $z=\cos \theta+i \sin \theta$, show that

$$
\begin{array}{ll}
\text { (i) } \frac{1}{z}=\cos \theta-i \sin \theta & \text { (ii) } \frac{1}{z^{2}}=\cos 2 \theta-i \sin 2 \theta
\end{array}
$$

Hence express
(i) $z^{2}+\frac{1}{z^{2}}$ as a multiple of $\cos 2 \theta$
(ii) $z^{2}-\frac{1}{z^{2}} \quad$ as a multiple of $\sin 2 \theta$.
13. If $z=\cos \theta+i \sin \theta$, show that $\left(z+\frac{1}{z}\right)=2 \cos \theta$.

By expanding $\left(z+\frac{1}{z}\right)^{3}$, show that $\cos ^{3} \theta=\frac{1}{4} \cos 3 \theta+\frac{3}{4} \cos \theta$.
14. Simplify
a) $\frac{(3-3 i)^{4}}{(\sqrt{3}+i)^{3}} \quad$ b) $\frac{(\sqrt{3}+i)^{4}}{(1-i)^{3}}$
15. Calculate
a) $\left\{2\left(\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}\right)\right\}^{5}$
b) $(1-i \sqrt{ } 3)^{6}$

EXERCISES 1-G

Use applications of de Moivre's theorem to prove the following trigonometric identities:
1 sin $3 \theta=3 \sin \theta-4 \sin ^{3} \theta$
$2 \sin 5 \theta=16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta$
$3 \cos 7 \theta=64 \cos ^{7} \theta-112 \cos ^{5} \theta+56 \cos ^{3} \theta-7 \cos \theta$
$4 \cos ^{4} \theta=\frac{1}{8}(\cos 4 \theta-4 \cos 2 \theta+3)$
$5 \cos ^{5} \theta=\frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta)$
6 a Show that $32 \cos ^{6} \theta=\cos 6 \theta-6 \cos 4 \theta+15 \cos 2 \theta+10$.
b Hence find $\int_{0}^{\frac{\pi}{6}} \cos ^{6} \theta \mathrm{~d} \theta$ in the form $a \pi+b \sqrt{3}$ where a and b are constants.
7 a Use de Moivre's theorem to show that $\sin 4 \theta=4 \cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta$.
b Hence, or otherwise, show that $\tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta}$.
c Use your answer to part b to find, to 2 dp , the four solutions of the equation $x^{4}+4 x^{3}-6 x^{2}-4 x+1=0$.
8. Use de Moivre's theorem to prove the trig. identities
(a) $\sin 2 \theta=2 \sin \theta \cos \theta$
(b) $\cos 5 \theta=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta$
9. Use De Moivre's Theorem to express $\cos 3 \theta$ and $\sin 3 \theta$ as polynomials in terms of $\sin \theta$ and $\cos \theta$ respectively.
10. Using De Moivre's and the Binomial theorem express cos 4θ as a polynomial in $\cos \theta$
11. Find a formula for $\cos 3 \theta$ in terms of powers of $\cos \theta$ by using De Moivre's theorem. Hence express $\cos ^{3} \theta$ in terms of $\cos \theta$ and $\cos 3 \theta$
12. Express $\sin 3 \theta$ as a polynomial in $\sin \theta$ and hence express $\sin ^{3} \theta$ in terms of $\sin \theta$ and $\sin 3 \theta$
13. Express $\sin ^{7} \theta$ in terms of the sines multiples of θ.
14. Find formulas for $\sin 6 \theta$ in terms of $\cos \theta$ and $\sin \theta$ by using de Movre's theorem
15. Express $\cos 5 \theta$ and $\sin 5 \theta$ as a polynomial in $\cos \theta$
16. Use De Moivre's theorem to show that
(a) $\operatorname{Cos} 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$
(b) $\sin 4 \theta=4 \cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta$
(c) $\operatorname{Cos} 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$
(d) $\operatorname{Cos}^{6} \theta=(1 / 32)[\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10]$
(e) $\cos ^{3} \theta=(1 / 4)[\cos 3 \theta+3 \cos \theta]$
(f) $\sin ^{4} \theta=(1 / 4)[\cos 4 \theta-4 \cos 2 \theta+3]$
(g) Express $\sin ^{5} \theta$ in terms of sines of multiples of θ.
25. Express $\frac{\sin 5 \theta}{\sin \theta}$ as a polynomial in $\sin \theta$
26. a Express $\sin ^{4} \theta$ in the form $d \cos 4 \theta+e \cos 2 \theta+f$, where d, e and f are constants.
b Hence find the exact value of $\int_{0}^{\frac{\pi}{2}} \sin ^{4} \theta \mathrm{~d} \theta$.
27.

Express
a $\cos 6 \theta$ in terms of powers of $\cos \theta$,
b $\frac{\sin 6 \theta}{\sin \theta}, \theta \neq n \pi, n \in \square$, in terms of powers of $\cos \theta$.

EXERCISES 1-H

1. Express $8 i$ in the form $r(\cos \theta+i \sin \theta)$.

Hence find the cube roots of $8 i$.
2. Express -1 in the form $r(\cos \theta+i \sin \theta)$.

Hence, find the cube roots of -1 .
3. Express the following in modulus-argument form and hence use De Moivre's theorem to find the square roots of each:
(i) $4 i$
(ii) $2-2 i \sqrt{3}$.
4. Find the cube roots of $27 i$.
5. Solve the equation $z^{4}+1=0$.
6. If $1, \omega$ and ω^{2} are the cube roots of 1 , show that
(i) $\left(1+\omega^{2}\right)^{3}=-1$
(ii) $(1-\omega)^{2}(1+\omega)=3$.
7. Verify that
(i) $\left(1-\omega+\omega^{2}\right)\left(1+\omega-\omega^{2}\right)=4$
(ii) $\frac{\omega}{(1-\omega)^{2}}=-\frac{1}{3}$.
8. Evaluate (i) $(1-\omega)\left(1-\omega^{2}\right)$
(ii) $\omega^{2}(1+\omega)^{2}+\omega^{2}(1-\omega)^{2}$.
9. Show that (i) $i\left(\omega-\omega^{2}\right)$ is real
(ii) $\frac{\omega^{2}(\omega-1)^{2}}{(\omega+1)^{3}}=3$
10. Show that $\left(\omega a+\omega^{2} b\right)\left(\omega^{2} a+\omega b\right)=a^{2}-a b+b^{2}$
11. Find the four fourth roots of $\mathbf{- 1 6}$.

EXERCISES 1-I

1 Solve the following equations, expressing your answers for z in the form $x+\mathrm{i} y$, where $x \in \square$ and $y \in \square$.
a $z^{4}-1=0$
b $z^{3}-\mathrm{i}=0$
c $z^{3}=27$
d $z^{4}+64=0$
e $z^{4}+4=0$
f $z^{3}+8 \mathrm{i}=0$

2 Solve the following equations, expressing your answers for z in the form $r(\cos \theta+\mathrm{i} \sin \theta)$, where $-\pi<\theta \leqslant \pi$.
a $z^{7}=1$
b $z^{4}+16 \mathrm{i}=0$
c $z^{5}+32=0$
d $z^{3}=2+2 \mathrm{i}$
e $z^{4}+2 \sqrt{3} \mathrm{i}=2$
f $z^{3}+16 \sqrt{3}+16 \mathrm{i}=0$

3 Solve the following equations, expressing your answers for z in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$. Give θ to 2 dp .
a $z^{4}=3+4 \mathrm{i}$
b $z^{3}=\sqrt{11}-4 \mathrm{i}$
c $z^{4}=-\sqrt{7}+3 i$

4 a Find the three roots of the equation $(z+1)^{3}=-1$. Give your answers in the form $x+\mathrm{i} y$, where $x \in \square$ and $y \in \square$.
b Plot the points representing these three roots on an Argand diagram.
c Given that these three points lie on a circle, find its centre and radius.
5 a Find the five roots of the equation $z^{5}-1=0$.
Give your answers in the form $r(\cos \theta+\mathrm{i} \sin \theta)$, where $-\pi<\theta \leqslant \pi$.
b Given that the sum of all five roots of $z^{5}-1=0$ is zero, show that $\cos \left(\frac{2 \pi}{5}\right)+\cos \left(\frac{4 \pi}{5}\right)=-\frac{1}{2}$.

6 a Find the modulus and argument of $-2-2 \sqrt{3} \mathrm{i}$.
b Hence find all the solutions of the equation $z^{4}+2+2 \sqrt{3} i=0$. Give your answers in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
7. Solve the equation $z^{3}+4 \sqrt{2}+4 \sqrt{2} i=0$.
8. Solve the equation $z^{4}=2+2 \sqrt{3} \mathrm{i}$.

EXERCISES 1-I (MISCELLANEOUS)

1. (a) Express $\frac{(1+2 i)^{2}}{1-i}$ in the form $a+i b$.
(b) Given that $z=-\frac{1}{2}+\frac{1}{2} i$, express $\frac{1}{1+z}$ in the form $r(\cos \theta+i \sin \theta)$, where $-\pi<\theta<\pi$.
(c) If $1, \omega$ and ω^{2} are the cube roots of unity, show that

$$
\left(1+2 \omega+3 \omega^{2}\right)\left(1+2 \omega^{2}+3 \omega\right)=3
$$

2. (a) Find all possible values of the real numbers a and b which satisfy the equation

$$
2+a i=\frac{6-2 i}{b+i}
$$

(b) Use De Moivre's theorem to express $\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)^{20}$ in the form $a+i b$.
(c) If $z^{2}=-2 i$, find the two values for z in the form $a+i b$.
3. (a) Find in the form $a+i b$, the complex number z which satisfies the equation

$$
\frac{2 z-3}{1-4 i}=\frac{3}{1+i} .
$$

(b) Given that $z=\sqrt{3}+i$, express in the form $r(\cos \theta+i \sin \theta)$
(i) z^{2}
(ii) $\frac{1}{z}$
(c) Given that p and q are real and that $1+2 i$ is a root of the equation $z^{2}+(p+5 i) z+q(2-i)=0$, find
(i) the values of p and q.
(ii) the other root of the equation.
4. (a) Given that $z_{1}=2+i$ and $z_{2}=-2+4 i$, find, in the form $a+i b$, the complex number z such that

$$
\frac{1}{z}=\frac{1}{z_{1}}+\frac{1}{z_{2}}
$$

Find also $|z|$.
(b) Express $z=\frac{2}{-1+i}$ in the form $r(\cos \theta+i \sin \theta)$ and hence evaluate

$$
\left(\frac{2}{-1+i}\right)^{6} .
$$

(c) If $1, \omega$ and ω^{2} are the cube roots of unity, find the value of

$$
\left(1+2 \omega+3 \omega^{2}\right)\left(1+2 \omega^{2}+3 \omega\right)
$$

5. (a) Find the two real numbers x and y such that

$$
x(3+4 i)-y(1+2 i)+5=0
$$

(b) Without using tables simplify $\frac{\left(\cos \frac{\pi}{9}+i \sin \frac{\pi}{9}\right)^{4}}{\left(\cos \frac{\pi}{9}-i \sin \frac{\pi}{9}\right)^{5}}$.
(c) Find the three roots of the equation $z^{3}=-i$.
6. (a) Given that $z=a+i b, a, b \in R$, find the possible values of z if $z \bar{z}-2 i z=7-4 i$.
(b) If $(a+i b)^{2}=5-12 i$, find the values of a and b, where $a, b \in R$.
(c) (i) The roots of the quadratic equation $z^{2}+p z+q=0$ are $1+i$ and $4+3 i$. Find the complex numbers p and q.
(ii) If $1+i$ is a root of the equation $z^{2}+(a+2 i) z+5+i b=0$, where a and b are real, find the values of a and b.
7. (a) Find x and $y \in R$ such that $x(1+i)+2(1-2 i) y=3$.
(b) Show that $1+i$ is a root of the equation $z^{3}-4 z^{2}+6 z-4=0$ and find the other roots.
(c) Express $2-2 i \sqrt{3}$ in the form $r(\cos \theta+i \sin \theta)$ and hence solve the equation

$$
z^{2}=2-2 i \sqrt{3} \text {, giving your answers in the form } a+i b
$$

8. (a) Express the complex number $z_{1}=\frac{11+2 i}{3-4 i}$ in the form $x+i y$, where x and y are real. Given that $z_{2}=2-5 i$, find the real numbers α and β such that $\alpha z_{1}+\beta z_{2}=-4+i$.
(b) z is a complex number such that $z=\frac{p}{2-i}+\frac{q}{1+3 i}$ where p and q are real. If $\arg z=\frac{\pi}{2}$ and $|z|=7$, find the values of p and q.
9. (a) Find the number m such that $|1-m i|=2 m$, where $m \in R$.
(b) The complex number $z=2 i$. Find the values of a and b such that $(a+i b)^{2}=z$.
(c) Express $\frac{[\sqrt{3}(\cos \theta+i \sin \theta)]^{4}}{\cos 2 \theta-i \sin 2 \theta}$ in the form $r(\cos k \theta+i \sin k \theta)$.
10. (a) The complex numbers $z_{1}=\frac{a}{1+i}, z_{2}=\frac{b}{1+2 i}$, where a and b are real, are such that $z_{1}+z_{2}=1$. Find the values of a and b.
(b) Use De Moivre's theorem to evaluate $(1+i)^{n}-(1-i)^{n}$, when $n=20$.
(c) Show that $(\sin \theta+i \cos \theta)^{n}=\cos n\left(\frac{\pi}{2}-\theta\right)+i \sin n\left(\frac{\pi}{2}-\theta\right)$, where $n \in N$.
11. (a) Show that $z=1+i$ is a root of the equation $z^{4}+3 z^{2}-6 z+10=0$ and find the other roots.
(b) If $2, z_{1}, z_{2}$ and z_{3} are the roots of the equation $z^{4}=16$, find the value of

$$
\left(2-z_{1}\right)\left(2-z_{2}\right)\left(2-z_{3}\right)
$$

(c) Use De Moivre's theorem or the method of induction to show that

$$
\left(\frac{\cos \theta-i \sin \theta}{\cos \theta+i \sin \theta}\right)^{n}=\cos 2 n \theta-i \sin 2 n \theta
$$

12. (a) The complex number z satisfies the equation $2 z \bar{z}-4 z=3-6 i$, where \bar{z} is the complex conjugate of z. Find in the form $x+i y$ two possible values of z.
(b) Show that $1+2 i$ is a root of the equation $z^{2}-3(1+i) z+5 i=0$ and find the other root.
(c) Expand $\left(z+\frac{1}{z}\right)^{4}$ and $\left(z-\frac{1}{z}\right)^{4}$.

By putting $z=\cos \theta+i \sin \theta$, deduce that

$$
\cos ^{4} \theta+\sin ^{4} \theta=\frac{1}{4}(\cos 4 \theta+3)
$$

13. (a) If $\frac{1+2 i}{1-i}$ is a root of the equation $a x^{2}+b x+c=0, a, b \in R$, find the values of a, b and c.
(b) If $1, \omega$ and ω^{2} are the cube roots of 1 and given that $\omega=\omega^{2}$ and that $1+\omega+\omega^{2}=0$, find the value of $\left(2 \omega^{2}+5 \omega+2\right)^{6}$.
(c) Show that $1+\cos \theta+i \sin \theta=2 \cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)$.
14. (a) The complex number z satisfies the equation

$$
2 z \bar{z}-4 z=3-6 i
$$

where \bar{z} is the complex conjugate of z.
Find, in the form $x+i y$, the two possible values of z.
(b) Find the quadratic equation with real coefficients which has

$$
2 i\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) \text { as one root. }
$$

If the roots of this quadratic equation are denoted by α and β, show that $\alpha^{6}+\beta^{6}=2^{7}$.
(c) Solve the equation $\frac{z}{3+4 i}+\frac{z-1}{5 i}=\frac{5}{3-4 i}$.
15. Find the cube roots of $1+i$
16. Find the cube roots of $z=64\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$
17. Find the fourth roots of 81 i , that is of

$$
81\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)
$$

18. Find the roots of $z^{2}-(1-i) z+7 i-4=0$ in the form $a+i b$.
19. (a) Compute

$$
\int(\cos 2 x)^{4} d x
$$

by using $\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)$ and expanding the fourth power.
(b) Assuming $a \in R$, compute

$$
\int e^{-2 x}(\sin a x)^{2} d x
$$

(same trick: write $\sin a x$ in terms of complex exponentials; make sure your final answer has no complex numbers.)
20. Find all solutions of $z^{5}=6 i$.
21. Find the real part of $(\cos 0.7+i \sin 0.7)^{53}$.
22. Find all complex numbers z, in Cartesian (rectangular) form such that $(z-1)^{4}=-1$.
23. Write $(\sqrt{3}+i)^{50}$ in polar and in Cartesian form.
24. Find all fifth roots of -32 .
25. Write the following in Cartesian form $a+i b$ where a and b are real and simplified as much as possible:
(a) $\frac{1}{1+i}+\frac{1}{1-i}$
(b) $e^{2+i \pi / 3}$
26. Write all solutions of $z^{3}=8 i$ in polar and Cartesian form, simplified as much as possible.
27. Find all complex solutions of the equation $z^{5}=1+i$.
28. Find the imaginary part of $\frac{2+i}{3-i}$.
29. Find the angle between 0 and 2π that is an argument of $(1-i)^{1999}$.
30. Find all z such that $e^{i z}=3 i$.
31. Write $(1-i)^{100}$ as $a+i b$ with a and b real numbers and simplify your answer.
32. Find the real part of $e^{(5+12 i) x}$ where x is real, and simplify your answer.
33. Find all solutions to $z^{6}=8$ and plot them in the complex plane.
34. Example. Obtain $\cos 6 \theta$ in terms of $\cos \theta$. Hence show that $x=\cos (2 k+1) \frac{\pi}{12}$ where $k=0,1,2,3,4,5$ is a solution to the equation $32 x^{6}-48 x^{4}+18 x^{2}-1=0$ and hence deduce that $\cos \frac{\pi}{12} \cdot \cos \frac{5 \pi}{12}=\frac{1}{4}$.

EXERCISES 1-K

1. Express $\mathrm{e}^{1-\mathrm{i}}$ in rectangular form accurately to three decimal places.
2. Compute $\sin (1-i)$
3. Evaluate $\cos (1+2 i)$
4. Evaluate $\cos (\pi-i)$
5. Find all values of $\ln 2$
6. Find all values of $\ln (-1)$
7. Find the principal value of $\ln (1+\mathrm{i})$
8. Find the principal value of $(1+\mathrm{i})^{1-\mathrm{i}}$
9. Find the principal value of $(1+i)^{2-i}$
10. Find the principal value of 2^{i}
11. Find all values of $(i)^{1 / 2}$
12. Find all values of $(i)^{2 / 3}$
13. Find and simplify $\cot (\pi-i \ln 3)$

EXERCISES 1-L

Evaluate the following integral by using complex exponentials
a. $\int \sin 3 x \sin 5 x d x$
b. $\int \cos 2 x \cos 4 x d x$
c. $\int \sin 2 x \cos 4 x d x$
d. $\int \sin ^{4} x d x$
e. $\int \sin ^{6} x d x$
f. $\int \sin ^{2} x \cos ^{2} x d x$
g. $\int \cos ^{2} x-\sin ^{2} x d x$
h. $\int \cos ^{4} x-\sin ^{4} x d x$
i. $\int \cos 2 x \sin 2 x d x$
j. $\quad \int_{0}^{\pi / 2} \cos ^{4} x d x$
k. $\int_{0}^{\pi} \cos 3 x \cos 5 x d x$

1. $\int_{0}^{\pi / 4} \cos ^{2} x \sin ^{2} x d x$
m. $\int \cos ^{8} x d x$
n. $\int \cos ^{4} x \sin ^{2} x d x$
o. $\int \frac{\tan ^{4} x}{\sec ^{4} x} d x$
P. $\int e^{x} \cos 2 x d x$
q. $\int \cos ^{4} x \sin ^{4} x d x$.
r. $\int \sin ^{2}(2 x) \cos (3 x) \mathrm{d} x$
S. $\int \mathrm{e}^{3 \mathrm{x}} \sin 2 \mathrm{xdx}$

EXERCISES 1-M (MISCELLANEOUS)

1 If $z=x+j y$, where x and y are real, find the values of x and y when $\frac{3 z}{1-j}+\frac{3 z}{j}=\frac{4}{3-j}$.
2 In the Argand diagram, the origin is the centre of an equilateral triangle and one vertex of the triangle is the point $3+j \sqrt{3}$. Find the complex numbers representing the other vertices.
3 Express $2+j 3$ and $1-j 2$ in polar form and apply DeMoivre's theorem to evaluate $\frac{(2+j 3)^{4}}{1-j 2}$. Express the result in the form $a+j b$ and in exponential form.

4 Find the fifth roots of $-3+j 3$ in polar form and in exponential form.

5 Express $5+j 12$ in polar form and hence evaluate the principal value of $\sqrt[3]{(5+j 12)}$, giving the results in the form $a+j b$ and in the form $r e^{j \theta}$.
6 Determine the fourth roots of -16 , giving the results in the form $a+j b$.
7 Find the fifth roots of -1 , giving the results in polar form. Express the principal root in the form $r e^{j \theta}$.
8 Determine the roots of the equation $x^{3}+64=0$ in the form $a+j b$, where a and b are real.
9 Determine the three cube roots of $\frac{2-j}{2+j}$ giving the result in modulus/ argument form. Express the principal root in the form $a+j b$.
10 Show that the equation $z^{3}=1$ has one real root and two other roots which are not real, and that, if one of the non-real roots is denoted by ω, the other is then ω^{2}. Mark on the Argand diagram the points which represent the three roots and show that they are the vertices of an equilateral triangle.
11 Determine the fifth roots of $(2-j 5)$, giving the results in modulus/ argument form. Express the principal root in the form $a+j b$ and in the form $r e^{j \theta}$.
12 Solve the equation $z^{2}+2(1+j) z+2=0$, giving each result in the form $a+j b$, with a and b correct to 2 places of decimals.
13 Express $e^{1-j \pi / 2}$ in the form $a+j b$.

14 Obtain the expansion of $\sin 7 \theta$ in powers of $\sin \theta$.
15 Express $\sin ^{6} x$ as a series of terms which are cosines of angles that are multiples of x.

16 If $z=x+j y$, where x and y are real, show that the locus $\left|\frac{z-2}{z+2}\right|=2$ is a circle and determine its centre and radius.
17 If $z=x+j y$, show that the locus $\arg \left\{\frac{z-1}{z-j}\right\}=\frac{\pi}{6}$ is a circle. Find its centre and radius.

18 If $z=x+j y$, determine the Cartesian equation of the locus of the point z which moves in the Argand diagram so that

$$
|z+j 2|^{2}+|z-j 2|^{2}=40 .
$$

19 If $z=x+j y$, determine the equations of the two loci:
(a) $\left|\frac{z+2}{z}\right|=3$ and
(b) $\arg \left\{\frac{z+2}{z}\right\}=\frac{\pi}{4}$

20 If $z=x+j y$, determine the equations of the loci in the Argand diagram, defined by:
(a) $\left|\frac{z+2}{z-1}\right|=2$ and
(b) $\arg \left\{\frac{z-1}{z+2}\right\}=\frac{\pi}{2}$

21 Prove that:
(a) if $\left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right|$, the difference of the arguments of z_{1} and z_{2} is $\frac{\pi}{2}$
(b) if $\arg \left\{\frac{z_{1}+z_{2}}{z_{1}-z_{2}}\right\}=\frac{\pi}{2}$, then $\left|z_{1}\right|=\left|z_{2}\right|$

22 If $z=x+j y$, determine the loci in the Argand diagram, defined by:
(a) $|z+j 2|^{2}-|z-j 2|^{2}=24$
(b) $|z+j k|^{2}+|z-j k|^{2}=10 k^{2} \quad(k>0)$

23 If $z=x+j y$, find the locus $\arg (z+1)=\frac{\pi}{3}$.
24 If $z=x+j y$, find the equation of the locus $\arg \left(z^{2}\right)=-\frac{\pi}{4}$.
25 If $z=x+j y$, find the equation of the locus $\left|\frac{z+1}{z-1}\right|=2$.
26. If $z_{1}=1+i \& z_{2}=2+3 i$ find the locus of z if $\left|z-z_{1}\right|=\left|z-z_{2}\right|$.
27. Sketch the locus of $\Re(z+i z)<2$.
28. Describe in geometric terms, the curve described by $2|z|=z+\bar{z}+4$.
29. Sketch the curve: (i) $\mathcal{R}\left(z^{2}\right)=3 \quad$ (ii) $\Im\left(z^{2}\right)=4$.

Show algebraically that $|z-2-i|=4$ represents a circle with radius 4 units and centre $(2,1)$.
30. If $\arg (z+3+2 i)=\frac{3 \pi}{4}$, sketch the locus of z on an Argand diagram. Find the Cartesian equation of this locus.
31. Find the loci in the complex plane given by
(a) $\operatorname{Re}(z)=2$,
(b) $\left|\frac{z+1}{z-1}\right|=2$.

