Chapter 11 - Mensuration Exercise Ex. 11.1

Solution 1
Perimeter of square $=4($ Side of the square $)=4(60 \mathrm{~m})=240 \mathrm{~m}$
Perimeter of rectangle $=2$ (Length + Breadth $)$
$=2(80 \mathrm{~m}+$ Breadth $)$
$=160 \mathrm{~m}+2 \times$ Breadth

It is given that the perimeter of the square and the rectangle are the same.
$160 \mathrm{~m}+2 \times$ Breadth $=240 \mathrm{~m}$
Breadth of the rectangle $=\left(\frac{80}{2}\right) \mathrm{m}=40 \mathrm{~m}$

Area of square $=(\text { Side })^{2}=(60 \mathrm{~m})^{2}=3600 \mathrm{~m}^{2}$
Area of rectangle $=$ Length \times Breadth $=(80 \times 40) \mathrm{m}^{2}=3200 \mathrm{~m}^{2}$

Thus, the area of the square field is larger than the area of the rectangular field.

Solution 2

Area of the square plot $=(25 \mathrm{~m})^{2}=625 \mathrm{~m}^{2}$
Area of the house $=(15 \mathrm{~m}) \times(20 \mathrm{~m})=300 \mathrm{~m}^{2}$

Area of the remaining portion $=$ Area of square plot - Area of the house
$=625 \mathrm{~m}^{2}-300 \mathrm{~m}^{2}=325 \mathrm{~m}^{2}$

The cost of developing the garden around the house is Rs 55 per m^{2}.
Total cost of developing the garden of area $325 \mathrm{~m}^{2}=\mathrm{Rs}(55 \times 325)$
$=$ Rs 17,875

Solution 3

Length of the rectangle $=[20-(3.5+3.5)]$ metres $=13 \mathrm{~m}$
Circumference of 1 semi-circular part $=\pi r=\left(\frac{22}{7} \times 3.5\right) \mathrm{m}=11 \mathrm{~m}$
Circumference of both semi-circular parts $=(2 \times 11) \mathrm{m}=22 \mathrm{~m}$

Perimeter of the garden $=A B+$ Length of both semi-circular regions $B C$ and
$D A+C D$
$=13 m+22 m+13 m=48 m$

Area of the garden = Area of rectangle $+2 \times$ Area of two semi-circular regions

$$
\begin{aligned}
& =\left[(13 \times 7)+2 \times \frac{1}{2} \times \frac{22}{7} \times(3.5)^{2}\right] \mathrm{m}^{2} \\
& =(91+38.5) \mathrm{m}^{2} \\
& =129.5 \mathrm{~m}^{2}
\end{aligned}
$$

Solution 4

Area of parallelogram $=$ Base \times Height
Hence, area of one tile $=24 \mathrm{~cm} \times 10 \mathrm{~cm}=240 \mathrm{~cm}^{2}$
Required number of tiles $=\frac{\text { Area of the floor }}{\text { Area of each tile }}$
$\frac{10800000}{240}=45000$ tiles

Thus, 45000 tiles are required to cover a floor of area $1080 \mathrm{~m}^{2}$.

Solution 5

(a)Radius (r) of semi-circular part $=\left(\frac{2.8}{2}\right) \mathrm{cm}=1.4 \mathrm{~cm}$

Perimeter of the given figure $=2.8 \mathrm{~cm}+\pi r$
$=2.8 \mathrm{~cm}+\left(\frac{22}{7} \times 1.4\right) \mathrm{cm}$
$=2.8 \mathrm{~cm}+4.4 \mathrm{~cm}$
$=7.2 \mathrm{~cm}$
(b)Radius (r) of semi-circular part $=\left(\frac{2.8}{2}\right) \mathrm{cm}=1.4 \mathrm{~cm}$

Perimeter of the given figure $=1.5 \mathrm{~cm}+2.8 \mathrm{~cm}+1.5 \mathrm{~cm}+\pi(1.4 \mathrm{~cm})$
$=5.8 \mathrm{~cm}+\frac{22}{7}(1.4 \mathrm{~cm})$
$=5.8 \mathrm{~cm}+4.4 \mathrm{~cm}$
$=10.2 \mathrm{~cm}$
(c)Radius (r) of semi-circular part $=\left(\frac{2.8}{2}\right) \mathrm{cm}=1.4 \mathrm{~cm}$

Perimeter of the figure(c) $=2 \mathrm{~cm}+\pi r+2 \mathrm{~cm}$

$$
\begin{aligned}
& =4 \mathrm{~cm}+\frac{22}{7} \times(1.4 \mathrm{~cm}) \\
& =4 \mathrm{~cm}+4.4 \mathrm{~cm} \\
& =8.4 \mathrm{~cm}
\end{aligned}
$$

Thus, the ant will have to take a longer round for the food-piece (b), because the perimeter of the figure given in alternative (b) is the greatest among all.

Chapter 11 - Mensuration Exercise Ex. 11.2

Solution 1

$$
\begin{aligned}
& \text { Area of trapezium }=\frac{1}{2}(\text { Sum of parallel sides }) \times(\text { Distances between parallel sides }) \\
& =\left[\frac{1}{2}(1+1.2)(0.8)\right] \mathrm{m}^{2}=0.88 \mathrm{~m}^{2}
\end{aligned}
$$

Solution 2

It is given that, area of trapezium $=34 \mathrm{~cm}^{2}$ and height $=4 \mathrm{~cm}$

Let the length of one parallel side be a. We know that,
Area of trapezium $=\frac{1}{2} x$ (Sum of parallel sides $) \times($ Distances between parallel sides $)$

$$
\begin{aligned}
& 34 \mathrm{~cm}^{2}=\frac{1}{2}(10 \mathrm{~cm}+a) \times(4 \mathrm{~cm}) \\
& 34 \mathrm{~cm}=2(10 \mathrm{~cm}+a) \\
& 17 \mathrm{~cm}=10 \mathrm{~cm}+a \\
& a=17 \mathrm{~cm}-10 \mathrm{~cm}=7 \mathrm{~cm}
\end{aligned}
$$

Thus, the length of the other parallel side is 7 cm .

Solution 3

Length of the fence of trapezium $\mathrm{ABCD}=\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}$
$120 \mathrm{~m}=\mathrm{AB}+48 \mathrm{~m}+17 \mathrm{~m}+40 \mathrm{~m}$

$$
A B=120 m-105 m=15 m
$$

Area of the field $\mathrm{ABCD}=\frac{1}{2}(\mathrm{AD}+\mathrm{BC}) \times \mathrm{AB}$

$$
\begin{aligned}
& =\left[\frac{1}{2}(40+48) \times(15)\right] \mathrm{m}^{2} \\
& =\left(\frac{1}{2} \times 88 \times 15\right) \mathrm{m}^{2} \\
& =660 \mathrm{~m}^{2}
\end{aligned}
$$

Solution 4

It is given that,

Length of the diagonal, $d=24 \mathrm{~m}$

Length of the perpendiculars, h_{1} and h_{2}, from the opposite vertices to the diagonal are $h_{1}=8 \mathrm{~m}$ and $h_{2}=13 \mathrm{~m}$

Area of the quadrilateral $=\frac{1}{2} d\left(h_{1}+h_{2}\right)$
$=\frac{1}{2}(24 \mathrm{~m}) \times(13 \mathrm{~m}+8 \mathrm{~cm})$
$=\frac{1}{2}(24 \mathrm{~m})(21 \mathrm{~m})$
$=252 \mathrm{~m}^{2}$

Thus, the area of the field is $252 \mathrm{~m}^{2}$.

Solution 5

Area of rhombus $=\frac{1}{2}$ (Product of its diagonals $)$

Therefore, area of the given rhombus
$=\frac{1}{2} \times 7.5 \mathrm{~cm} \times 12 \mathrm{~cm}$
$=45 \mathrm{~cm}^{2}$

Solution 6

Let the length of the other diagonal of the rhombus be x .
A rhombus is a special case of a parallelogram.
We know that,
Area of a parallelogram $=$ Base \times Height
\Rightarrow Area of a rhombus $=5 \times 4.8=24 \mathrm{~cm}^{2}$
Also, Area of a rhombus $=\frac{1}{2}(\operatorname{Pr}$ oduct of its diagonals $)$
$\Rightarrow 24=\frac{1}{2}(8 \times x)$
$\Rightarrow x=\frac{24 \times 2}{8}=6 \mathrm{~cm}$
Thus, the length of the other diagonal of a rhombus is 6 cm .

Solution 7

Area of rhombus $=\frac{1}{2}$ (Product of its diagonals $)$
Area of each tile
$=\left(\frac{1}{2} \times 45 \times 30\right) \mathrm{cm}^{2}$
$=675 \mathrm{~cm}^{2}$

Area of 3000 tiles $=(675 \times 3000) \mathrm{cm}^{2}=2025000 \mathrm{~cm}^{2}=202.5 \mathrm{~m}^{2}$

The cost of polishing is Rs 4 per m^{2}.
Cost of polishing $202.5 \mathrm{~m}^{2}$ area $=\operatorname{Rs}(4 \times 202.5)=$ Rs 810
Thus, the cost of polishing the floor is Rs 810 .

Solution 8

Let the length of the field along the road be $l \mathrm{~m}$. Hence, the length of the field along the river will be 2 lm .

Area of trapezium $=\frac{1}{2}$ (Sum of parallel sides) (Distance between the parallel sides)
$\Rightarrow 10500 \mathrm{~m}^{2}=\frac{1}{2}(l+2 l) \times(100 \mathrm{~m})$
$3 l=\left(\frac{2 \times 10500}{100}\right) \mathrm{m}=210 \mathrm{~m}$
$l=70 \mathrm{~m}$

Thus, length of the field along the river $=(2 \times 70) \mathrm{m}=140 \mathrm{~m}$

Solution 9

Side of regular octagon $=5 \mathrm{~cm}$
Area of trapezium $\mathrm{ABCH}=$ Area of trapezium DEFG
Area of trapezium $\mathrm{ABCH}=\left[\frac{1}{2}(4)(11+5)\right] \mathrm{m}^{2}=\left(\frac{1}{2} \times 4 \times 16\right) \mathrm{m}^{2}=32 \mathrm{~m}^{2}$
Area of rectangle $\mathrm{HGDC}=11 \times 5=55 \mathrm{~m}^{2}$
Area of octagon $=$ Area of trapezium $\mathrm{ABCH}+$ Area of trapezium DEFG

+ Area of rectangle HGDC
$=32 \mathrm{~m}^{2}+32 \mathrm{~m}^{2}+55 \mathrm{~m}^{2}=119 \mathrm{~m}^{2}$
Solution 10

Jyoti's way of finding area is as follows.

Area of pentagon $=2($ Area of trapezium ABCF$)$
$=\left[2 \times \frac{1}{2}(15+30)\left(\frac{15}{2}\right)\right] \mathrm{m}^{2}$
$=337.5 \mathrm{~m}^{2}$
Kavita's way of finding area is as follows.

Area of pentagon $=$ Area of $\triangle A B E+$ Area of square $B C D E$
$=\left[\frac{1}{2} \times 15 \times(30-15)+(15)^{2}\right] \mathrm{m}^{2}$
$=\left(\frac{1}{2} \times 15 \times 15+225\right) \mathrm{m}^{2}$
$=(112.5+225) \mathrm{m}^{2}$
$=337.5 \mathrm{~m}^{2}$

Solution 11

Given that, the width of each section is same. Therefore,

$$
\begin{aligned}
& \mathrm{B}=\mathrm{BJ}=\mathrm{CK}=\mathrm{CL}=\mathrm{DM}=\mathrm{DN}=\mathrm{AO}=\mathrm{AP} \\
& \mathrm{~L}=\mathrm{IB}+\mathrm{BC}+\mathrm{CL} \\
& 28=\mathrm{B}+20+\mathrm{CL} \\
& \mathrm{~B}+\mathrm{CL}=28 \mathrm{~cm}-20 \mathrm{~cm}=8 \mathrm{~cm} \\
& \mathrm{~B}=\mathrm{CL}=4 \mathrm{~cm}
\end{aligned}
$$

Hence, $\mathrm{IB}=\mathrm{BJ}=\mathrm{CK}=\mathrm{CL}=\mathrm{DM}=\mathrm{DN}=\mathrm{AO}=\mathrm{AP}=4 \mathrm{~cm}$
Area of section $\mathrm{BEFC}=$ Area of section DGHA
$=\left[\frac{1}{2}(20+28)(4)\right] \mathrm{cm}^{2}=96 \mathrm{~cm}^{2}$

Area of section $\mathrm{ABEH}=$ Area of section CDGF

Chapter 11 - Mensuration Exercise Ex. 11.3

Solution 1
We know that,

Total surface area of the cuboid $=2(l h+b h+l b)$
Total surface area of the cube $=6(l)^{2}$
Total surface area of cuboid $(a)=[2\{(60)(40)+(40)(50)+(50)(60)\}] \mathrm{cm}^{2}$
$=[2(2400+2000+3000)] \mathrm{cm}^{2}$
$=(2 \times 7400) \mathrm{cm}^{2}$
$=14800 \mathrm{~cm}^{2}$

Total surface area of cube $(\mathrm{b})=6(50 \mathrm{~cm})^{2}=15000 \mathrm{~cm}^{2}$

Thus, the cuboidal box (a) will require lesser amount of material.

Solution 2

Total surface area of suitcase $=2[(80)(48)+(48)(24)+(24)(80)]$
$=2[3840+1152+1920]$
$=13824 \mathrm{~cm}^{2}$

Total surface area of 100 suitcases $=(13824 \times 100) \mathrm{cm}^{2}=1382400 \mathrm{~cm}^{2}$
Required tarpaulin $=$ Length \times Breadth
$1382400 \mathrm{~cm}^{2}=$ Length $\times 96 \mathrm{~cm}$
Length $=\left(\frac{1382400}{96}\right) \mathrm{cm}=14400 \mathrm{~cm}=144 \mathrm{~m}$

Thus, 144 m of tarpaulin is required to cover 100 suitcases.

Solution 3

Given that, surface area of cube $=600 \mathrm{~cm}^{2}$

Let the length of each side of cube be l.
Surface area of cube $=6(\text { Side })^{2}$
$600 \mathrm{~cm}^{2}=6 l^{2}$
$l^{2}=100 \mathrm{~cm}^{2}$
$l=10 \mathrm{~cm}$

Thus, the side of the cube is 10 cm .

Solution 4

Length (l) of the cabinet $=2 \mathrm{~m}$

Breadth (b) of the cabinet $=1 \mathrm{~m}$

Height (h) of the cabinet $=1.5 \mathrm{~m}$

Area of the cabinet that was painted $=2 h(l+b)+l b$

$$
\begin{aligned}
& =[2 \times 1.5 \times(2+1)+(2)(1)] \mathrm{m}^{2} \\
& =[3(3)+2] \mathrm{m}^{2} \\
& =(9+2) \mathrm{m}^{2} \\
& =11 \mathrm{~m}^{2}
\end{aligned}
$$

Solution 5

Given that,
Length $(l)=15 \mathrm{~m}$, breadth $(b)=10 \mathrm{~m}$, height $(h)=7 \mathrm{~m}$

Area of the hall to be painted = Area of the wall + Area of the ceiling
$=2 h(l+b)+l b$
$=[2(7)(15+10)+15 \times 10] \mathrm{m}^{2}$
$=[14(25)+150] \mathrm{m}^{2}$
$=500 \mathrm{~m}^{2}$

It is given that $100 \mathrm{~m}^{2}$ area can be painted from each can.
Number of cans required to paint an area of $500 \mathrm{~m}^{2}$
$=\frac{500}{100}=5$

Hence, 5 cans are required to paint the walls and the ceiling of the cuboidal hall.

Solution 6

Similarity between both the figures is that both have the same heights.
The difference between the two figures is that one is a cylinder and the other is a cube.
Lateral surface area of the cube $=4 l^{2}=4(7 \mathrm{~cm})^{2}=196 \mathrm{~cm}^{2}$
Lateral surface area of the cylinder $=2 \pi r h=\left(2 \times \frac{22}{7} \times \frac{7}{2} \times 7\right) \mathrm{cm}^{2}=154 \mathrm{~cm}^{2}$
Hence, the cube has larger lateral surface area.

Solution 7

Total surface area of cylinder $=2 \pi r(r+h)$

$$
\begin{aligned}
& =\left[2 \times \frac{22}{7} \times 7(7+3)\right] \mathrm{m}^{2} \\
& =440 \mathrm{~m}^{2}
\end{aligned}
$$

Thus, $440 \mathrm{~m}^{2}$ sheet of metal is required.

Solution 8

A hollow cylinder is cut along its height to form a rectangular sheet.
Area of cylinder $=$ Area of rectangular sheet
$4224 \mathrm{~cm}^{2}=33 \mathrm{~cm} \times$ Length
Length $=\frac{4224 \mathrm{~cm}^{2}}{33 \mathrm{~cm}}=128 \mathrm{~cm}$
Thus, the length of the rectangular sheet is 128 cm .

Perimeter of the rectangular sheet $=2$ (Length + Width $)$
$=[2(128+33)] \mathrm{cm}$
$=(2 \times 161) \mathrm{cm}$
$=322 \mathrm{~cm}$

Solution 9

In one revolution, the roller will cover an area equal to its lateral surface area.

Thus, in 1 revolution, area of the road covered $=2 \pi r h$
$=2 \times \frac{22}{7} \times 42 \mathrm{~cm} \times 1 \mathrm{~m}$
$=2 \times \frac{22}{7} \times \frac{42}{100} \mathrm{~m} \times 1 \mathrm{~m}$
$=\frac{264}{100} \mathrm{~m}^{2}$

In 750 revolutions, area of the road covered
$=\left(750 \times \frac{264}{100}\right) \mathrm{m}^{2}$
$=1980 \mathrm{~m}^{2}$
Solution 10
Height of the label $=20 \mathrm{~cm}-2 \mathrm{~cm}-2 \mathrm{~cm}=16 \mathrm{~cm}$
Radius of the label $=\left(\frac{14}{2}\right) \mathrm{cm}=7 \mathrm{~cm}$

Label is in the form of a cylinder having its radius and height as 7 cm and 16 cm .
Area of the label $=2 \pi$ (Radius) (Height)
$=\left(2 \times \frac{22}{7} \times 7 \times 16\right) \mathrm{cm}^{2}=704 \mathrm{~cm}^{2}$

Chapter 11 - Mensuration Exercise Ex. 11.4

Solution 1
(a) In this situation, we will find the volume.
(b) In this situation, we will find the surface area.
(c) In this situation, we will find the volume.

Solution 2

The heights and diameters of these cylinders A and B are interchanged.

We know that,
Volume of cylinder $=\pi r^{2} h$

If measures of r and h are same, then the cylinder with greater radius will have greater area.

Radius of cylinder $\mathrm{A}=\frac{7}{2} \mathrm{~cm}$
Radius of cylinder $B=\left(\frac{14}{2}\right) \mathrm{cm}=7 \mathrm{~cm}$

As the radius of cylinder B is greater, therefore, the volume of cylinder B will be greater.

Let us verify it by calculating the volume of both the cylinders.
Volume of cylinder $\mathrm{A}=\pi r^{2} h$

$$
\begin{aligned}
& =\left(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 14\right) \mathrm{cm}^{3} \\
& =539 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of cylinder $\mathrm{B}=\pi r^{2} h$

$$
\begin{aligned}
& =\left(\frac{22}{7} \times 7 \times 7 \times 7\right) \mathrm{cm}^{3} \\
& =1078 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of cylinder B is greater.
Surface area of cylinder $\mathrm{A}=2 \pi r(r+h)$

$$
\begin{aligned}
& =\left[2 \times \frac{22}{7} \times \frac{7}{2}\left(\frac{7}{2}+14\right)\right] \mathrm{cm}^{2} \\
& =\left[22 \times\left(\frac{7+28}{2}\right)\right] \mathrm{cm}^{2} \\
& =\left(22 \times \frac{35}{2}\right) \mathrm{cm}^{2} \\
& =385 \mathrm{~cm}^{2}
\end{aligned}
$$

Surface area of cylinder $\mathrm{B}=2 \pi r(r+h)$

$$
\begin{aligned}
& =\left[2 \times \frac{22}{7} \times 7 \times(7+7)\right] \mathrm{cm}^{2} \\
& =(44 \times 14) \mathrm{cm}^{2} \\
& =616 \mathrm{~cm}^{2}
\end{aligned}
$$

Thus, the surface area of cylinder B is also greater than the surface area of cylinder A.

Solution 3
Base area of the cuboid $=$ Length \times Breadth $=180 \mathrm{~cm}^{2}$

Volume of cuboid $=$ Length \times Breadth \times Height
$900 \mathrm{~cm}^{3}=180 \mathrm{~cm}^{2} \times$ Height
Height $=\frac{900}{180} \mathrm{~cm}$

Thus, the height of the cuboid is 5 cm .

Solution 4

Volume of cuboid $=60 \mathrm{~cm} \times 54 \mathrm{~cm} \times 30 \mathrm{~cm}=97200 \mathrm{~cm}^{3}$

Side of the cube $=6 \mathrm{~cm}$

Volume of the cube $=(6)^{3} \mathrm{~cm}^{3}=216 \mathrm{~cm}^{3}$
Required number of cubes $=\frac{\text { Volume of the cuboid }}{\text { Volume of the cube }}$
$=\frac{97200}{216}=450$

Thus, 450 cubes can be placed in the given cuboid.

Solution 5

Diameter of the base $=140 \mathrm{~cm}$
Radius (r) of the base $=\left(\frac{140}{2}\right) \mathrm{cm}=70 \mathrm{~cm}=\frac{70}{100} \mathrm{~m}$
Volume of cylinder $=\pi r^{2} h$
$1.54 \mathrm{~m}^{3}=\frac{22}{7} \times \frac{70}{100} \mathrm{~m} \times \frac{70}{100} \mathrm{~m} \times h$
$h=\left(\frac{1.54 \times 100}{22 \times 7}\right) \mathrm{m}=1 \mathrm{~m}$
Thus, the height of the cylinder is 1 m
Solution 6

Radius of cylinder $=1.5 \mathrm{~m}$
Length of cylinder $=7 \mathrm{~m}$
Volume of cylinder $=\pi r^{2} h$
$=\left(\frac{22}{7} \times 1.5 \times 1.5 \times 7\right) \mathrm{m}^{3}$
$=49.5 \mathrm{~m}^{3}$
$1 \mathrm{~m}^{3}=1000 \mathrm{~L}$

Required quantity $=(49.5 \times 1000) \mathrm{L}=49500 \mathrm{~L}$
Therefore, 49500 L of milk can be stored in the tank.

Solution 7

(i) Let initially the edge of the cube be l.

Initial surface area $=6 l^{2}$

If each edge of the cube is doubled, then it becomes $2 l$.
New surface area $=6(2 l)^{2}=24 l^{2}=4 \times 6 l^{2}$
Clearly, the surface area will be increased by 4 times.
(ii) Initial volume of the cube $=\beta$

When each edge of the cube is doubled, it becomes $2 l$.
New volume $=(2 l)^{3}=8 l^{\beta}=8 \times l$
Clearly, the volume of the cube will be increased by 8 times.

Solution 8

Volume of cuboidal reservoir $=108 \mathrm{~m}^{3}=(108 \times 1000) \mathrm{L}=108000 \mathrm{~L}$

It is given that water is being poured at the rate of 60 L per minute.

That is, $(60 \times 60) \mathrm{L}=3600 \mathrm{~L}$ per hour
Required number of hours $=\frac{108000}{3600}=30$ hours

Thus, it will take 30 hours to fill the reservoir.

