THE UNIVERSITY OF ZAMBIA
 SCHOOL OF NATURAL SCIENCES
 DEPARTMENT OF MATHEMATICS AND STATISTICS
 MAT2200 ASSIGNMENT 1-May 6, 2020
 DUE DATE: 18/05/2020
 SYSTEMS OF LINEAR EQUATIONS-Prepared by Dr. C. CHILESHE

INSTRUCTIONS:

- This assignment comprises nine(9) questions, you are advised to attempt all the questions.
- Submit your hand written solutions only on the moodle platform.

1. Determine the pivot and free variables in each of the following systems and solve the systems:
(a)

$$
\begin{aligned}
2 x_{1}-3 x_{2}-6 x_{3}-5 x_{4}+2 x_{5} & =7 \\
x_{3}+3 x_{4}-7 x_{5} & =6 \\
x_{4}-2 x_{5} & =1 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
x+2 y-3 z+2 t & =2 \\
2 x+5 y-8 z+6 t & =5 \\
3 x+4 y-5 z+2 t & =4 .
\end{aligned}
$$

(c)

$$
\begin{array}{r}
x-2 y=5 \\
2 x+3 y=3 \\
3 x+2 y=7 .
\end{array}
$$

2. In each of the following systems, determine:
(i) the values of a such that the system has a unique solution,
(ii) the pairs of values of (a, b) so that the system has more than one solution,
(iii) why the value of b does not have an effect on whether the system has a unique solution.
(a)

$$
\begin{array}{r}
x-2 y=1 \\
x-y+a z=2 \\
a y+9 z=b .
\end{array}
$$

(b)

$$
\begin{array}{r}
x+2 y+2 z=1 \\
x+a y+3 z=3 \\
x+11 y+a z=b .
\end{array}
$$

(c)

$$
\begin{aligned}
& x+y+a z=1 \\
& x+a y+z=4 \\
& a x+y+z=b .
\end{aligned}
$$

3. Write v as a linear combination of u_{1}, u_{2}, u_{3} :
(a) $v=(4,-9,2), u_{1}=(1,2,-1), u_{2}=(1,4,2), u_{3}=(1,-3,2)$,
(b) $v=(1,3,2), u_{1}=(1,2,1), u_{2}=(2,6,5), u_{3}=(1,7,8)$,
(c) $v=(1,4,6), u_{1}=(1,1,2), u_{2}=(2,3,5), u_{3}=(3,5,8)$.
4. Let $u_{1}=(1,1,2), u_{2}=(1,3,-2), u_{3}=(4,-2,-1)$ in \mathbb{R}^{3}. Show that u_{1}, u_{2} and u_{3} are orthogonal and write v as a linear combination of u_{1}, u_{2} and u_{3} where
(a) $v=(1,-3,3)$,
(b) $v=(1,1,1)$,
(c) $v=(5,-5,9)$.
5. Find the dimension and a basis of the general solution W of each of the following systems:
(a)

$$
\begin{array}{r}
x_{1}+3 x_{2}+2 x_{3}-x_{4}-x_{5}=0 \\
2 x_{1}+6 x_{2}+5 x_{3}+x_{4}-x_{5}=0 \\
5 x_{1}+15 x_{2}+12 x_{3}+x_{4}-3 x_{5}=0 .
\end{array}
$$

(b)

$$
\begin{array}{r}
2 x_{1}-4 x_{2}+3 x_{3}-x_{4}+2 x_{5}=0 \\
3 x_{1}-6 x_{2}+5 x_{3}-2 x_{4}+4 x_{5}=0 \\
5 x_{1}-10 x_{2}+7 x_{3}-3 x_{4}+18 x_{5}=0 .
\end{array}
$$

6. Reduce each of the following matrices in:
(i) echelon form,
(ii) row canonical form.
(a)

$$
\left[\begin{array}{cccccc}
2 & 4 & 2 & -2 & 5 & 1 \\
3 & 6 & 2 & 2 & 0 & 4 \\
4 & 8 & 2 & 6 & -5 & 7
\end{array}\right],
$$

(b)

$$
\left[\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & 3 & 8 & 12 \\
0 & 0 & 4 & 6 \\
0 & 2 & 7 & 10
\end{array}\right],
$$

(c)

$$
\left[\begin{array}{cccc}
1 & 3 & 1 & 3 \\
2 & 8 & 5 & 10 \\
1 & 7 & 7 & 11 \\
3 & 11 & 7 & 15
\end{array}\right] .
$$

7. Using only $0^{\prime} s$ and $1^{\prime} s$, find the number n of possible 3×3 matrices in row canonical form.
8. Prove that delelting the last column of an echelon form (respectively, the row canonical form) of an augmented matrix $M=[A, B]$ yields an echelon (respectively, the row canonical form) of A.
9. Matrix A is equivalent to matrix B, written $A \approx B$, if there exist nonsingular matrices P and Q such that $B=P A Q$. Prove that \approx is an equivalence relation.
